电话:13485538018
关闭
您当前的位置:首页 > 职场资讯 > 农业招聘信息

STOTEN | 中国科学院东北地理与农业生态研究所王光华团队:大豆根际碳-磷循环对气候变化的响应

来源:农业人才网 时间:2023-08-10  05:29:50 作者:农业人才网 浏览量:

图文摘要 | Graphical abstract

导读 | Introduction

在全球气候变化过程中,大气CO2浓度和温度不断升高,改变了农业生态系统的生产力。土壤有机质富含大量的有机磷,土壤有机碳的矿化对磷素循环具有重要影响。因此,大气CO2浓度和温度升高改变光合碳向土壤中的输送,刺激土壤微生物活性,加速土壤有机碳(SOC)的分解,可能释放更多的磷(P)进入土壤土壤溶液。本研究利用13C示踪技术模拟气候变化下作物光合碳向地下输送过程,以及其对土壤有机磷矿化的影响。今天,就让我们一起来看一看气候变化是如何影响土壤碳—磷循环的耦合过程吧。

Elevated CO2 and temperature likely alter photosynthetic carbon inputs to soils, which may stimulate soil microbial activity to accelerate the decomposition of soil organic carbon (SOC), liberating more phosphorus (P) into the soil solution. we hypothesis on the association of SOC decomposition and P transformation in the plant rhizosphere requires robust soil biochemical evidence, which is critical to nutrient management for the mitigation of soil quality against climate change. Thus, we stimulated that photosynthetic carbon flow in the plant–soil continuum was traced with 13CO2 labeling. Interestingly, the elevated CO2 plus warming treatment increased the primed carbon (C) but decreased the NaHCO3-extratable organic. Furthermore, elevated CO2 increased the abundances of C degradation genes, such as abfA and ManB, and P mineralization genes, such as gcd, phoC and phnK. The study indicated that the response of microorganisms to plant-C flow was decisive for coupled C and P cycles, which were likely accelerated under climate change.

一、碳激发

Carbon priming effect

在大豆13C标记期间,利用NaOH溶液吸收土壤释放出的CO2,每24 h收集一次,并更换NaOH溶液,连续收集15 d。将收集后的NaOH溶液用来测定土壤13CO2释放量。结果显示,升高CO2浓度、升高温度以及CO2浓度和温度同时升高均增加了土壤激发碳,增加幅度分别为24%、22%和43%。

CO2 trapping was conducted to quantify belowground CO2 released from soil columns after 13CO2 labeling. The belowground CO2 was trapped in 60 mL 0.5 M NaOH solution, and traps were collected every 24 h for 15 consecutive days from the beginning of labeling to 7 days after labeling. The results that elevated CO2, warming and elevated CO2 plus warming significantly increased CO2 release compared to the control (Fig. 1). Elevated CO2 and warming increased the primed C by 24% and 22%, respectively. Furthermore, the primed C was 105.75 mg m-2 h-1 and 151.11 mg m-2 h-1 under control and eCO2 plus warming conditions, respectively, representing a significant increase of 43% (Fig. 1).

图1 大气CO2浓度和温度升高对大豆根际土壤碳激发的影响

误差线代表标准误差(SE,n=3);相同字母代表处理间在0.05水平上不显著(P < 0.05)

Fig. 1 Effect of eCO2 and warming on priming effects (Primed soil C) of in rhizosphere of soybean. Error bars represent standard errors of means of three replicates. Values with the same letter are not significantly different (P ≥ 0.05)

二、根际磷组分

P fractions in the rhizosphere

气候变化对根际磷组分产生了显著的影响(图2)。对于有机磷库,增温和CO2浓度和温度同时升高分别导致NaHCO3-Po减少19%和33%,说明大气CO2浓度和温度升高对NaHCO3浸提有机磷库产生了交互作用。然而,与NaHCO3-Po含量相反,大气CO2浓度和温度同时升高显著增加NaOH-Po含量25%。对于无机磷库,CO2浓度升高和温度同时升高使根际NaHCO3-Pi和HCl-P浓度分别降低了8%和12%。此外,通过相关性分析表明,NaHCO3-Po与微生物碳(MBC)(R2 =0.673,图3C)、土壤碳 (R2 =0.578,图3B)和植物碳 (R2 =0.310,图3A)呈负相关。而NaOH-Po与MBC呈正相关(R2 =0.752,图3D)。

Elevated CO2 and warming altered P pools in the rhizosphere of soybean (Fig. 2). Regarding the organic P fractions, warming and elevated CO2 plus warming led to 19 % and 33 % decreases in NaHCO3-Po, respectively. However, elevated CO2 plus warming significantly increased the concentrations of NaOH-Po by 25 % (Fig. 2). Regarding inorganic P fractions, elevated CO2 plus warming decreased the concentrations of NaHCO3-Pi and HCl-P by 8 % and 12 % in the rhizosphere, respectively. Furthermore, NaHCO3-Po was negatively correlated with MBC (R2 =0.673, Fig. 3C), soil-derived C (R2 =0.578, Fig. 3B) and plant-derived C (R2 =0.310, Fig. 3A); However, NaOH-Po was positively correlated with MBC (R2 =0.752, Fig. 3D).

图2 大气CO2浓度和温度升高对大豆根际磷组分的影响

Fig. 2 Effect of eCO2 and warming on the P fraction in the rhizosphere of soybean

图3 大气CO2浓度和温度升高条件下大豆根际NaHCO3-Po与植物碳(A)、土壤碳(B)、微生物量C(C)以及NaOH-Po与微生物量C(D)的关系

Fig. 3 Effect of eCO2 and warming on the P fraction in the rhizosphere of soybean

三、根际磷酸酶活性和土壤微生物量碳

Phosphatase and microbial biomass C in the rhizosphere

气候变化对大豆根际磷酸酶活性和MBC均产生了显著影响(图4)。与对照相比,大气CO2浓度升高使酸性磷酸酶活性增加了19%,而且当温度同时升高时,酸性磷酸酶活性增加了50%(图4)。此外,单独CO2浓度升高对MBC未产生显著影响,但是温度升高以及CO2浓度和温度同时升高使MBC分别增加46%和88%,说明大气CO2浓度和温度升高对MBC产生了交互影响。

Elevated CO2 and warming altered phosphatase activity and microbial biomass C in the rhizosphere of soybean (Fig. 4). Compare with control, elevated CO2 and elevated CO2 plus warming significantly increased acid phosphatase activity by 19 % and 50 %, respectively. In addition, elevated CO2 did not change the microbial biomass C compared to the control, but warming and elevated CO2 plus warming increased the microbial biomass C by 46 % and 88%, respectively, indicating an interactive effect of elevated CO2 and temperature (Fig. 4).

图4 大气CO2浓度和温度升高对大豆根际磷酸酶和土壤微生物量碳的影响

Fig. 4Effect of eCO2 and warming on acid phosphatase activity and microbial biomass C in the rhizosphere of soybean

四、功能微生物基因

Microbial functional genes

大气CO2浓度和温度升高对大豆根际C、N、P和S功能基因丰度具有不同的影响(图5)。与对照相比,大气CO2浓度升高增加了C降解基因abfAManB拷贝数,但是增温显著降低了abfAManB基因拷贝数(图5)。此外,与对照相比,大气CO2浓度升高显著增加了磷转化gcdphoCphnK基因拷贝数。大气CO2浓度升高对编码N循环的功能基因没有产生显著影响,但是增温以及CO2浓度和温度同时升高均使ureCnirS1gdhA基因丰度显著下降。然而,编码S循环功能基因丰度yedZdarA在大气CO2浓度升高条件下显著增加。

Elevated CO2 and warming altered C, N, P and S the abundances of the function genes in the rhizosphere of soybean (Fig. 5). Compared to the control, elevated CO2 significantly increased the abundances of the genes encoding arabinofuranosidase (abfA) and mannose- 1-phosphate guanylyl transferase (manB) that were involved in the C degradation. However, warming significantly decreased abundances of abfA and manB genes (Fig. 5). Regarding the P cycle processes, compared to the control, eCO2 increased abundances of gcd, phoC, and phnK. Elevated CO2 and warming decreased the abundances of functional genes relevant to N-cycling including ureC, nirS1 and gdhA. Regarding the S cycle, the abundances of yedZ for sulfite oxidase and darA for sulfite reductase alpha subunit significantly increased in response to elevated CO2 (Fig. 5).

图5 大气CO2浓度和温度升高对大豆根际C降解功能基因(abfAligManB),P循环功能基因(gcdphoDphoCpstSqppCphnXphnK),N循功能基因(nosZ1ureCnarGnirS1gdhA)和S循环功能基(yedzdarA)的影响

Fig. 5 The effect of eCO2 and warming on functional genes abundance of C degradation (abfA, lig and ManB), P cycling (gcd, phoD, phoC, pstS, qppC, phnK and phnX), N cycling (nosZ1, ureC, narG, nirS1 and gdhA) and S cycling (yedz and darA) in the rhizosphere of soybean 

总结 | Conclusions

大气CO2浓度和温度升高促进更多的光合碳向地下部输入,对土壤有机质降解和有机磷矿化产生了正激发效应,表明在气候变化条件下微生物分解有机C和有机P的能力较强。而且,在气候变化条件下,根际碳降解和磷转化相关功能微生物的基因丰度的协同变化进一步证明了这种正激发效应与土壤有机磷矿化相关联。本研究为气候变化条件下CO2浓度能够通过植物碳流来影响土壤功能微生物,进而促进土壤碳磷循环过程提供了理论支持和数据支撑。

The elevated CO2 plus warming stimulated more plant-C into the rhizosphere of soybean, resulting in a positive effect on soil organic matter and more P mineralization, implying greater microbial decomposing capacities to decomposition soil C and organic P. Labile P and organic P fractions in the rhizosphere of soybean would be more depleted in future higher CO2 atmosphere, probably due to a higher the abundance of P functional genes. Furthermore, the synergistic effect of gene abundance of functional microorganisms related to C degradation and P transformation further indicates that the priming effect is associated with soil organic P mineralization under climate change in future. This study provides a theoretical and data support for that future high atmospheric CO2 concentration may promote soil carbon and phosphorus cycling by altering plant carbon flow and functional microorganisms involved in C decomposition and P transformation.

扫二维码 | 查看原文

https://www.sciencedirect.com/

science/article/pii/

S0048969723042031

本文内容来自ELSEVIER旗舰期刊Sci Total Environ第899卷发表的论文:

Guo L.L., Yu Z.H., Li Y.S., Xie Z.H., Wang G.H., Liu J.J., Hu X.J., Wu J.J., Liu X.B., Jin J., 2023. Stimulation of primed carbon under climate change corresponds with phosphorus mineralization in the rhizosphere of soybean. Sci Total Environ, 899, 165580.

https://doi.org/10.1016/j.scitotenv.2023.165580

第一作者:郭丽丽  博士

中国科学院东北地理与农业生态研究所

在中国科学院东北地理与农业生态研究所获得博士学位,现任河南省科学院地理研究所助理研究员。主要研究方向为气候变化对农田作物—土壤循环过程。以第一作者在Science of the Total Environment、Land Degradation and Development等国际SCI期刊发表论文4篇。

通讯作者:金剑  研究员

中国科学院东北地理与农业生态研究所

中国科学院东北地理与农业生态研究所研究员、博导,主要从事气候变化对黑土有机碳和养分循环的影响及相关微生物分子生态机制方面的研究。主持科研项目10余项。以第一作者或责任作者发表论文90余篇,其中SCI 60余篇,H-指数33,参与出版专著4部,获国家授权发明专利4项。

近期在Sci Total Environ发表的其他论文:

1. Guo LL, et al., 2022. Plant phosphorus acquisition links to phosphorus transformation in the rhizospheres of soybean and rice grown under CO2 and temperature co-elevated. Science of the Total Environment, 823, 153558.

2. Liu ZX, et al., 2022. Archaeal communities perform an important role in maintaining microbial stability under long term continuous cropping systems. Science of the Total Environment, 2022, 838, 156413.

3. Li S, et al., 2022. Liming mitigates the spread of antibiotic resistance genes in an acid black soil. Science of the Total Environment, 2022, 817, 152971.

左右滑动二维码,查看论文信息>>>

期刊简介

关注我们 | 扫描二维码

Follow us | Scan the barcode 

Elsevier旗舰期刊Science of the Total Environment (STOTEN)于1972年创刊,刊载环境及与人类相关的研究成果。2022年影响因子为9.8,位于JCR 1区。在2022谷歌学术指标期刊排名中,H5指数为225,位居全球期刊总榜第22位。

Elsevier's flagship journal Science of the Total Environment (STOTEN) started in 1972. STOTEN is an international journal for scientific research of environment and its relationship with humankind. According to the Journal Citation Reports in 2022, the Impact Factor of STOTEN is 9.8. According to the 2022 Google Scholar Metrics, its H5-index is 225, ranking the 22nd among all journals.

• Website:

https://www.journals.elsevier.com/

science-of-the-total-environment

• Submission:

https://www.editorialmanager.com/

stoten/default.aspx

/ 往期推荐 /

STOTEN |废水中流感和呼吸道病毒的监测

STOTEN高被引| 东北电力大学王擎教授:有机固废共水热碳化成水热炭作为潜在燃料—综述

STOTEN|约瑟夫斯特凡研究所Ester Heath:城市含水层中滥用药物残留物的出现和来源-化学分析和溶质迁移模拟

STOTEN | 美国密西根州立大学Hui Li:生物被膜富集的抗生素增强了其对细菌耐药性的选择压力

STOTEN | 兰州大学文物微生物研究团队:石栖微生物组及其驱动的生物地化循环介导砂岩文物风化

STOTEN | 西北农林科技大学韦革宏团队:想让作物长的好,硝化菌群少不了

STOTEN | 宁波大学植物病毒学研究所葛体达:不同温度条件下噬菌体影响土壤溶解性有机质矿化的实验证据

STOTEN | 浙江大学梁永超教授:中国水稻系统植硅体碳封存潜力

STOTEN | 中科院大气物理研究所潘月鹏研究员:农田施肥并不是城市大气氨的主要来源

Sci Total Environ最新影响因子9.8

排版编辑:秦之瑞

责任编辑:白晓永  王 权

微信扫一扫分享资讯
客服服务热线
13485538018
7*24小时服务
微信公众号
手机浏览

Copyright C 2022 All Rights Reserved 版权所有 聚才网络 皖ICP备20008326号-13

地址:北京市朝阳区广渠门外大街8号优仕阁大厦B做10层(1012-1) EMAIL:qlwl@foxmail.com

Powered by PHPYun.

用微信扫一扫